The Impact of Vitamin D in Breast Cancer: Genomics, Pathways, Metabolism
Carmen J. Narvaez, Donald Matthews, Erika LaPorta, Katrina M. Simmons, Sarah Beaudin and JoEllen Welsh
Nuclear receptors exert profound effects on mammary gland physiology and have complex roles in the etiology of breast cancer. In addition to receptors for classic steroid hormones such as estrogen and progesterone, the nuclear vitamin D receptor (VDR) interacts with its ligand 1α,25(OH)2D3 to modulate the normal mammary epithelial cell genome and subsequent phenotype. Observational studies suggest that vitamin D deficiency is common in breast cancer patients and that low vitamin D status enhances the risk for disease development or progression. Genomic profiling has characterized many 1α,25(OH)2D3 responsive targets in normal mammary cells and in breast cancers, providing insight into the molecular actions of 1α,25(OH)2D3 and the VDR in regulation of cell cycle, apoptosis, and differentiation. New areas of emphasis include regulation of tumor metabolism and innate immune responses. However,the role of VDR in individual cell types (i.e., epithelial, adipose, fibroblast, endothelial, immune) of normal and tumor tissues remains to be clarified. Furthermore, the mechanisms by which VDR integrates signaling between diverse cell types and controls soluble signals and paracrine pathways in the tissue/tumor microenvironment remain to be defined. Model systems of carcinogenesis have provided evidence that both VDR expression and 1α,25(OH)2D3 actions change with transformation but clinical data regarding vitamin D responsiveness of established tumors is limited and inconclusive. Because breast cancer is heterogeneous, analysis of VDR actions in specific molecular subtypes of the disease may help to clarify the conflicting data. The expanded use of genomic, proteomic and metabolomic approaches on a diverse array of invitro and invivo model systems is clearly warranted to comprehensively understand the network of vitamin D regulated pathways in the context of breast cancer.
Format: PDF
Dimensions: 8.5 x 11 inches
Pages: 10